
手机用了一两年后,电池续航能力明显下降,是换电池还是换手机?这对于消费者来说都是一笔不小开支。2月13日,复旦大学科研团队宣布可以用“打一针”的方式为电池“精准治疗”,提升续航能力,这一研究成果以《外部供锂技术突破电池的缺锂困境和寿命界限》(“External Li supply reshapes Li-deficiency and lifetime limit of batteries”)为题在《自然》(Nature)主刊上发表。
最新科研成果:“打一针”就让电池“满血复活”
锂电池已经改变了人们的生活方式,但仍不能完全满足当前和未来世界的需求。比如,电动车电池只能保证6-8年/1000-1500次充放电的高性能寿命;低温使用会加速电池变坏;储能电站和极端环境储能场景需要电池寿命提升一个数量级;即将到来的大规模电池退役回收,可能造成环境的污染和资源的浪费。
面对这些实际且紧迫的问题,复旦大学高分子科学系、聚合物分子工程全国重点实验室、纤维材料与器件研究院、高分子科学智能中心彭慧胜/高悦团队一直思考如何通过基础研究创新来提供解决方案。
团队提出了打破电池基础设计原则中锂离子依赖共生于正极材料的理论,通过AI和有机电化学的结合,成功设计了从未被报道的锂载体分子,将电池活性载流子和电极材料解耦。这种载体分子就像药物一样,可以通过“打一针”的方式注入到废旧衰减的电池中,精准补充电池中损失的锂离子,实现容量的回复,对电池进行“精准治疗”而不是“宣布死亡”,为退役电池的处理提供了一种新方式。使用这一技术,电池在充放电上万次后仍展现出接近出厂时的健康状态,循环寿命从目前的500-2000圈提升到超过12000-60000圈,在国际上尚无先例报道。此外,电池材料必须含锂的束缚规则也被打破,使用绿色、不含重金属的材料构筑电池成为可能。
创新研究范式,利用AI探索未知的分子世界
“这项成果离不开AI技术的运用。”论文的通讯作者之一高悦告诉记者,实现锂载体分子的设想,需要分子具备严格且复杂的物理化学性质,包括分子的电化学活性、分解电压的范围、溶解度、空气稳定性、化学稳定性、酸碱性、分解产物的成分、反应动力学、分子可合成性和成本。这样的分子机制是没有先例报道的,难以通过传统研究范式,即依靠理论和经验进行设计。
为此,团队利用AI结合化学信息学,将分子结构和性质数字化,通过引入有机化学、电化学、材料工程技术方面的大量关联性质,构建数据库,利用非监督机器学习,进行分子推荐和预测,成功获得了从未被报道的锂离子载体分子——三氟甲基亚磺酸锂(CF3SO2Li)。
团队合成这种分子后,验证了其具备各种严苛的性能要求,且成本低易合成,和各类电池活性材料、电解液以及其他组分有良好的兼容性,成功在软包、圆柱、方壳和纤维状锂离子电池器件上实现应用。
据了解,团队研究相关的验证实验都是在真实电池器件而非模型上完成,以此充分暴露可能的问题并予以解决,从而推动下一步的产业转化。比如提升分子反应动力学以避免影响电池的化成速度;探索化学制备反应路径,能够低成本、精准合成高纯度分子。团队正在开展锂离子载体分子的宏量制备,并与国际顶尖电池企业合作,力争将技术转化为产品和商品,助力国家在新能源领域的引领性发展。
复旦大学为独立通讯单位,彭慧胜和高悦为该论文通讯作者,高分子科学系博士研究生陈舒为第一作者,合作单位包括南开大学、湖南工程学院和深圳大学,研究得到科技部、国家自然科学基金委、上海市科委、复旦大学科学智能专项基金等项目支持。
头图为科研团队介绍研究成果。劳动报记者 郭娜 摄影